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Semiphenomenological model for the dispersion of DNA during electrophoresis
in a microfluidic array of posts

Kevin D. Dorfman and Jean-Louis Viovy*
Laboratoire Physicochimie-Curie, CNRS/UMR 168, Institut Curie, 26 Rue d’Ulm, F-75248 Paris Cedex 5, France

~Received 8 September 2003; published 12 January 2004!

A lattice Monte Carlo model is proposed for quantifying the dispersion of DNA during microfluidic elec-
trophoresis in a quasiperiodic array of posts similar to that encountered in the microfluidic self-assembly of
magnetic bead columns. The transport model is semiphenomenological in the sense that all parameters, such as
the post geometry, average collision time, and collision probability, are assumed to be accessible either directly
from experiment or from a model of the microscale physics. Asymptotically exact formulas are obtained for the
mean velocity and dispersivity using Taylor-Aris dispersion theory, which permits a straightforward analysis of
the separation efficiency. The model is applicable to a variety of situations involving collision-retardation
processes.
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I. INTRODUCTION

Characterizing the dynamics of DNA during its intera
tion with a post, in particular the dependence of the dyna
ics upon the length of the DNA strand, is requisite for pro
erly quantifying many important separation processes.
conventional electrophoretic separations in gels, the DN
post interaction represents a useful, albeit idealized, mo
for the entanglement of DNA with the otherwise random
arranged fibers of the gel. In contrast, the DNA-post inter
tion very precisely models the prevailing separation mec
nism in a number of microfluidic devices. Such devices ty
cally exploit microlithography to fabricate perfectly period
arrays of posts@1#, and this has led to a number of expe
mental@2# and theoretical@3–8# analyses of DNA dynamics
in such arrays. As an alternative to microlithographic fab
cation, it is also possible to form periodic arrays of po
through the self-assembly of superparamagnetic beads
‘‘Ephesia’’ system@9#.1

Although theoretical studies are typically motivated
applications involving arrays of posts, for the most p
@3–7# they focus upon the intricate dynamics of the collisi
with a single isolated post. Thus, one hopes to arrive a
rational model for the average time engaged with the p
~the trapping time!, t, and the collision probabilityPc as a
function of the characteristics of the post and the size of
DNA. For practical applications, though, it is thecumulative
effect of these post collisions which determines the aver
DNA motion and, ultimately, the separation efficiency. Mor
over, it is not entirely obvious how to average single-p
dynamics into relevant macroscopic quantities, such as

*Electronic address: Jean-Louis.Viovy@curie.fr
1The term Ephesia refers to the temple of Artemis in anci

Greece~present day Turkey!. The temple was constructed of a
array of columns and repeatedly destroyed and reconstructed o
same site. Likewise, under the influence of an external magn
field, the magnetic beads form periodic arrays of columns wh
can be reversibly assembled and disassembled in the same ch
by turning the magnetic field on and off.
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dispersion and the separation resolution.
This issue of homogenization can be side stepped enti

by resorting to detailed Brownian dynamics simulations
the DNA motion for a particular arrangement of posts@8#. In
addition to quantifying the average transport through the
ray, detailed simulations may provide insight into the micro
cale dynamics, such as the relaxation~or lack thereof! of the
DNA between post-collision events. However, large sc
simulations are, by necessity, computationally intensive,
each simulation only reveals information about a single s
cific combination of experimental parameters. Consequen
the simple analytical theory proposed here, despite the
that it may be less precise than a detailed simulation, is
of great utility because it produces parametric results.

In addition, semiphenomenological theories such as
one developed here are useful for conceptually understa
ing the separation process. Indeed, this has been the ca
the past for several novel microfluidic protocols, such
those based upon rectified Brownian motion@10,11# and en-
tropic trapping@12#. Naturally, initial analyses such as the
focus upon the mobility difference arising in the devic
since it is this difference which gives rise to the separati
However, completely characterizing the separation also
quires knowledge of the dispersivityD̄* , which quantifies
the separation sharpness. Unfortunately, the dispersivity
ten proves much more difficult to calculate than the aver
velocity Ū* . For example, intuition suggests that transport
an array of posts should yield a mean velocity of the form

Ū* 5
U

11K
, ~1.1!

whereU is the velocity in the absence of the posts andK is
a ‘‘retardation factor,’’ presumably calculable from th
single-post data. As will be evident shortly, the proper qu
tification of D̄* is not so obvious.

We present here a framework for properly averaging m
croscale post-collision data into simple analytical results
the average DNA mobility and dispersivity through the arra
We focus upon a disordered staggered array of posts, a
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figuration which is similar to that realized in the Ephes
system. Our approach to the transport phenomena is s
phenomenological, postulating that the average post spa
the probability of colliding with a post,Pc , and the average
time to negotiate the post,t, can be obtained experimental
or from a detailed microscale model. The mean velocity a
dispersivity are then calculated exactly via generaliz
Taylor-Aris dispersion theory@13,14#, without the need to
resort to numerical simulations, and the implications of th
results on the separation process are discussed. Althoug
model is developed in the context of post-collision induc
separations, the generic results forŪ* and D̄* can be ap-
plied to many other experimentally relevant situations
volving periodically retarded motion, such as entropic tra
ping @12# and spatially periodic ratchet-type separations,
specifying a particular model forPc andt.

II. MODEL DESCRIPTION

We focus our attention on quasiperiodic arrays of po
such as the one depicted in Fig. 1. Within a given row,
cylindrical posts of diameterd are regularly spaced by th
distancea. The spacing between the center lines of adjac
rows is alsoa, but the alignment between the rows is diso
dered. The resulting array possesses the qualitative fea
of a staggered or hexagonal array, but without the strict
riodicity. Such disorder is characteristic of the Ephesia s
tem, in which repulsion between the magnetic posts lead
local order and a Bragg peak in the diffraction pattern,
interactions with the channel walls prevent long-range ord

In this discrete lattice Monte Carlo model, the motion
the DNA is approximated by jumps between the volume
ements~lattice sites! represented by the boxes in Fig. 1.
the absence of any interactions with the post, the DNA jum
from site to site in the direction of the field with its free
solution velocity,U5m0E, where m0 is the free-solution
mobility of the strand andE is the applied field. When arriv
ing in one of the volume elements, we assume~i! the prob-
ability of encountering a post is quantified by the collisi
probability Pc and ~ii ! if the DNA becomes hooked on th
post, it is retained for an average timet. A number of mi-
croscale models have been proposed for the latter pa
eters, and the details of these models will be discus
shortly. For the most part, though, we will employt andPc

FIG. 1. Schematic of a quasiperiodic staggered array of cy
drical posts of diameterd and intrarow center-to-center spacinga.
The rows of obstacles are separated by the distancea, but are ran-
domly ‘‘shifted’’ to produce a configuration similar to that resultin
from the self-assembly of magnetic bead columns.
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as model parameters in our calculations, in order to prod
generic results which transcend the specifics of the unde
ing microscale model. At times we will adopt simple mode
for t and Pc when it aids in conceptual understanding,
when it allows us to predict general experimental trends.

The use of an average trapping time, rather than spec
ing a complete distribution of trapping times, is invoked f
simplicity and supported by numerical simulations@3,5#
which indicate that universal behavior exists fort across a
broad range of parameters. A particularly simple model fot
assumes that it scales with the inverse of the applied fi
t;E21, which appears to be the case from single-post
periments@2# and scaling arguments@7# in relatively strong
fields.

In a coarse-grained model such as the one developed h
the simplest possible model for the collision probability a
sumes a dependence only upon the linear post densityd/a
that the DNA sees in one dimension as it moves through
array. In a semiempirical comparison of this theory and E
esia experiments@15#, use of the latter collision probability
furnished reasonable agreement for the band broaden
However, this purely geometric interpretation ofPc is most
likely an oversimplification, since simulation data@5,7# and
recent experiments@16# suggest that the collision probabilit
depends strongly upon the initial offset with the center of
post, the so-called ‘‘impact parameter,’’ as well as the fie
strength@16#. Moreover, Brownian dynamics simulations@8#
in sparse arrays with typical experimental post densities
dicate that, for sufficiently dense arrays, the collision pro
ability eventuallydecreaseswith increasing post density be
cause the DNA do not have sufficient time to relax betwe
encounters with the post. Finally, simulations@7# predict a
coupling between the size of the posts,d, and the trapping
time t since it is difficult for short DNA to become extende
around large obstacles. However, the latter coupling can
accounted for in a semiempirical manner@15# by using an
experimentally measured trapping time.

A key feature of our model is the Markovian assumpti
that the collision probability is identical for all post region
For perfectly staggered arrays, this is probably not a go
assumption. After unhooking in a perfect array, the DNA
misaligned with the next post, and must reorient itself v
molecular diffusion before it has the potential to suffer a
other collision. The characteristic time for this reorientati
process, which can be much longer than the DNA relaxat
time, implies that the collision probability increases as t
DNA moves further away from its last collision, resulting
a non-Markovian process@5#. In contrast, the random relativ
location between successive posts in our quasiregular a
lessens the correlation between the unhooking from the
post and the probability of colliding with the next one. In th
present model, we assume that the shifted layers and re
ing post randomness ensures complete decorrelation betw
collision events.

At first glance, it would appear that the issue of relaxati
would severely limit the realism of our model for actu
separations of long DNA. The time for the DNA to return
its equilibrium conformation is characterized by the Rou
relaxation time,tR'Nb2/D, whereD is the diffusion coef-
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ficient, b is the persistence length, andN is the number of
persistence lengths. To ensure that the DNA is comple
relaxed between possible collisions,tR must be longer than
the mean transit timea/U between post regions. Fo
l-DNA, the Rouse relaxation time is of the order of secon
which means that for a typical post spacinga;5 mm and
electrophoretic mobilitym0;3 mm V/cm s, we would be
limited to fieldsE,0.2 V/cm. However, immediately afte
engaging a post, there is a very rapid relaxation due to n
linear elasticity@5#, and recent experiments@16# indicate that
much of the relaxation process forl-DNA takes place in
'0.15 s. Consequently, it is likely that the DNA have und
gone significant relaxation before their next collision, even
relatively high fields. Actually, some level of ‘‘relaxatio
memory’’ between collisions could be taken into account
the model via reduced effective collision parameters. Avo
ing this, however, reduces the number of free parameter
the model and increases its generality.

Owing to the strong fields typically employed in expe
ments~up to 35 V/cm! @15#, we neglect longitudinal diffu-
sion and lateral jumps due to molecular diffusion, there
requiring that each jump results in motion in the direction
the field. This convective model should be reasonable w
the reduced field is large@17#, namely, when

m0Ea

2D
@1. ~2.1!

With the values for m0 and a cited above andD
;0.25mm2/s, Eq.~2.1! requires thatE@0.1 V/cm, which is
easily satisfied in experiments. This assumption is furt
supported by video microscopy experiments in the Ephe
system, which reveal that the DNA tends to traverse the a
in a more-or-less linear fashion.

III. GENERALIZED TAYLOR-ARIS DISPERSION THEORY

In the present section, we use Taylor-Aris dispers
theory@13,14# to calculate the mean velocityŪ* and disper-
sivity D̄* from the model described above. This procedu
entails two steps~i! converting the model into the local grap
and specifying the transport thereon and~ii ! computingŪ*
and D̄* from the general theory.

A. Graphical construction

In each volume element of Fig. 1, the DNA can eith
engage the post or pass through the region unimpeded,
the entry into the volume element can be preceded eithe
an engagement with the post or by an unimpeded pass. C
sequently, the lattice model can be represented by the
tially periodic ~basic! graph depicted in Fig. 2~a!. In this
graph, engagements with the post correspond to the b
circles h and unimpeded passes correspond to the w
circlesm, and the edges represent the possible transitions
convention, the nodesi are represented by Roman charact
and the edgesj are represented by Arabic numerals.

In order to perform the calculation, it is necessary to e
tract from the model~i! the jump timeT; ~ii ! the transition
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probabilitiesw( j ) for moving between the nodes of the la
tice; and~iii ! the probabilitiesw( i ) that the DNA does not
exit node i during the timeT. The neglect of translationa
diffusive effects renders this a convective model, whereup
jumps on the graph occur, on average, with the time step

T5
a

U
5

a

m0E
. ~3.1!

If the DNA is resident on a nonpost nodem, it must exit the
node @i.e., w(m)50] and can do so through the edges
beled 1 and 2. With the probability of hitting the postPc ,
the transition probabilities for exiting nodem are w(1)
5Pc and w(2)512Pc . When the DNA has engaged th
post on nodeh, the probability of remaining on the pos
w(h), is 12a21, where a is the dimensionless trappin
time

a[
t

T
. ~3.2!

Accounting for the trapping time, the remaining transitio
probabilities arew(3)5Pc /a and w(4)5(12Pc)/a. Im-
plicit in this model is the fact that the posts impede t
motion of the DNA, which requires thata.1, where the
trivial limit a→1 corresponds to the case where the po
offer no resistance whatsoever to the DNA motion.

The dispersion calculation is not performed on ba
graph of Fig. 2~a!, but rather on the ‘‘local’’ graph,G l . The
local graph, depicted in Fig. 2~b!, is constructed by combin
ing the homologous vertices outside the unit cell with th
counterparts inside the unit cell. In the present circu
stances, this results in loops on the local graph which co
spond to consecutive hits or misses.

B. Calculation of Ū* and D̄*

For the one-dimensional transport problem conside
here, the calculation scheme requires first computing
node-based fields,P0

`( i ) and B( i ), which are subsequently
employed in edge-based summations which ultimately f
nish Ū* and D̄* . The field P0

`( i ), representing the

FIG. 2. ~a! Basic graph for the array of posts depicted in Fig.
Open circlesm and black circlesh, respectively, correspond to
‘‘misses’’ and ‘‘hits’’ with the post. The edges numbered 1–4 co
respond to the different types of jumps that can be made on
graph. The dashed box is the graphical equivalent of the volu
elements of Fig. 1.~b! The local graph. Edges 2 and 3, whic
correspond to consecutive misses or hits, result in loops on
graph.
1-3
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asymptotic probability of locating the DNA at a given nodei
on the local graph, is computed by the solution of the eq
tion set@14#

(
j PV1( i )

w~ j !P0
`~ i 8!2@12w~ i !#P0

`~ i !50, ~3.3!

subject to the normalization condition

P0
`~h!1P0

`~m!51. ~3.4!

In the former,V1( i ) are the edges entering nodei from i 8.
The solution of Eqs.~3.3! and ~3.4! is

P0
`~m!5

12Pc

11Pc~a21!
, P0

`~h!5
aPc

11Pc~a21!
.

~3.5!

The mean velocity is then computed by the edge s
@14#,

Ū* 5
a

T (
j

w~ j !P0
`~ i 8!, ~3.6!

over all edges with initial vertices ati 8. Use of Eq.~3.5! in
the latter furnishes the mean velocity

Ū* 5
U

11Pc~a21!
. ~3.7!

This result was anticipated in Eq.~1.1!, with the retardation
K being the product of the probability of hitting a post in th
arrayPc and the additional timea21 necessary to negotiat
the post.

Computation of theB field necessitates solving the equ
tion set@14#

(
j PV1( i )

Fw~ j !

T GP0
`~ i 8!@B~ i 8!1a#2F12w~ i !

T GP0
`~ i !B~ i !

5P0
`~ i !Ū* , ~3.8!

where B( i ) are determined to within an arbitrary additiv
constant. This constant can be used to setB(h)50, where-
upon we recover the result

B~m!5
a2Ū* T

Pc
. ~3.9!

The dispersivity may then be computed from the ed
summation@14#

D̄* 5
1

2 (
j

Fw~ j !

T GP0
`~ i 8!b̃~ j !22

T

2
Ū* Ū* , ~3.10!

whereb̃( j )5a2B( i )1B( i 8) for an edge directed fromi 8 to
i. With some algebra, we arrive at

D̄*

Ua
5

Pc~a21!@11~22Pc!~a21!#

2@11Pc~a21!#3
. ~3.11!
01190
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e

Knowledge ofŪ* andD̄* for two different DNA permits
computing the separation resolution between them ove
separation lengthL. With the number of theoretical plate
@18#,

N5
Ū* L

2D̄*
, ~3.12!

for each species, the separation resolution is computed
@18#

Rs5
DŪ*

^Ū* &
A^N&

16
, ~3.13!

where D refers to the~positive! difference between the
speeds and̂•••& is an average value.

IV. DISCUSSION

In Fig. 3, we plot the dimensionless dispersivity of E
~3.11! as a function of the collision probability for sever
different values ofa. The shapes of these curves arise fro
the relative contributions of the two driving forces for di
persion, namely, the stochastic hooking time, embodied it
~anda), and the collision probability. The qualitative beha
ior of these curves can be most easily understood by con
ering three limiting cases:

~a! Short trapping times(a21!1). This first case, where
the posts act like a sieve and offer minimal resistance
DNA motion through the array, can arise in two very diffe
ent circumstances. First, short DNA tend to quickly roll o
the posts without becoming strongly extended@7#, an obvi-
ous case of short trapping times. For longer DNA, howev
the coupling between the field strength and obstacle spa
may make the time between collisions insufficient for t

FIG. 3. Plot of the dimensionless dispersion coefficient a
function of the collision probability for the values ofa indicated in
the figure.
1-4
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DNA to relax completely. In the latter case, the DNA is in
relatively extended state when it engages the next post, a
is unnecessary for it to complete a full ‘‘hook-and-pulle
mechanism before disengaging from the post, resulting a
in short trapping times.

In the limit a21!1, Eq. ~3.10! possesses the leadin
order behavior

D̄*

Ua
'

Pc

2
~a21!. ~4.1!

The dispersion is linear inPc , since more sieving collisions
result in greater spreading, and the magnitude of the dim
sionless dispersion is small because these collisions do
strongly effect the DNA mobility. Although Eq.~4.1! is only
strictly valid for a21!1, we can~arbitrarily! define and
upper bound to this sieving behavior as the critical val
a* 54/3, whose maximum dispersion occurs atPc51 @19#.
There is a qualitative change in the dependence ofD̄* upon
Pc whena.a* .

~b! Long trapping times and high collision probabilitie
@a21@1,Pc5O(1)#. The second case can be conside
the ‘‘normal’’ mode of operation for these systems. The e
gagement with the posts is sufficiently long to strongly eff
the DNA mobility, and the number of these collisions is s
nificant. To leading order, we now have

D̄*

Ua
'

22Pc

2Pc
2~a21!

. ~4.2!

The qualitative behavior is exactly the opposite of case~i!;
the dispersion now decreases with increasingPc or a. To
understand this result, it is easiest to consider initially
case wherePc51. Every pass through the post region r
sults in a collision, so the randomness inPc is eliminated
and the dispersion is governed solely by the distribution
trapping times. The spreading between two DNA which en
a post region at the same time and are retained for respe
timest1 andt2 depends upon the differenceut12t2u, which
is itself governed by the distribution of possible choices
t1 and t2. Our use of a mean trapping timet, rather than
specifying a detailed distribution, implies that the distrib
tion of trapping times decays exponentially at the ratet,
consistent with numerical simulations@3#. Consequently, the
distribution becomes ever wider ast is decreased, and sinc
it is this width which dominates the dispersion whenPc

51, thenD̄* must increase ast is decreased. Moreover, a
the collision probability moves away fromPc51, D̄* must
increase as well, since the randomness in the trapping is
augmented by the randomness in the collision probability

~c! Long trapping times and low collision probabilitie
@a21@1,Pc(a21)!1#. The behavior in this final limit is
best understood by starting atPc50. This is a trivial case,
since there are no collisions and the dispersion vanis
~since molecular diffusion has been neglected!. As Pc in-
creases, to leading order
01190
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D̄*

Ua
'Pc~a21!2. ~4.3!

The dispersion increases with increasingt, contrary to the
behavior in the opposite limitPc5O(1). In the small Pc
limit, the dispersion is not dominated by the distribution
trapping times, but rather by the magnitude oft. Returning
to our example of two DNA with trapping timest1 andt2, it
is very likely in the lowPc limit that one of the DNA, say
number 2, will not be trapped at all. In this case, its trapp
time vanishes,t250, and it is the magnitude oft1, rather
than the distribution governingt1, which determines the dif-
ference in the ‘‘trapping’’ times and the spreading@21#. The
large contribution toD̄* from the trapping time in the low
Pc ~dilute array! limit is consistent with detailed single-pos
numerical simulations@4#.

Having analyzed the limiting behavior ofD̄* , we now
turn our attention to estimatingD̄* in Ephesia experiments
Explicitly, for the separation ofl-phage DNA and its dimer
@15#, collision probabilities ofPc'0.35 and trapping times
of a'225 were observed, which indicates that the disp
sion should be somewhere between cases~ii ! and~iii !. From
Eq. ~3.11! ~or, alternatively, Fig. 3!, the dimensionless dis
persion coefficient is typically between 0.1 and 0.5. Usi
the values cited in Sec. II and a nominal electric fie
strength of 10 V/cm, we estimate that the dispersivity
duced by the presence of the posts is typically 60-300 tim
greater than molecular diffusion alone. This is consist
with both the underlying assumption in this analysis, name
that the dispersion is dominated by the post interactions,
the situation encountered in experiments.

In addition to making the latter numerical estimates, s
nificant insights intoD̄* and the separation resolution can
obtained by adopting simple models fort and Pc . To this
extent, we will assume thatt;E21 andPc;d/a. In such a
model,a and Pc are no longer functions ofE, whereupon
we recover the scalingD̄* ;E. This is analogous to classica
results for the dispersion of tracer particles in strong fl
through porous media@20#, where the dispersion is linea
with the flow strength. Moreover, sinceD̄* andŪ* are lin-
ear inE, then number of platesN and the separation resolu
tion Rs are independent ofE. As a consequence, a plot of th
separation resolution against the electric field would plat
at high field strengths. Given a fixed chip sizeL, the overall
efficiency is optimized by running at higher fields, since t
separation time is decreased without sacrificing resolut
Likewise, for a given separation timeL/^Ū* & ~or, equiva-
lently, a given ratioL/E), the separation resolution is opt
mized by employing large values ofL andE, in accord with
experiments@15#. In light of the fact thatt;E21 and Pc
;a/d are only rough approximations, the latter observatio
should be viewed as general trends, rather than quantita
statements.

V. CONCLUSION

In the present contribution, we have presented a strai
forward semiphenomenological model for DNA separati
1-5
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in the arrays of posts typical of self-assembled magnetic
ticles. For the most part, we have treated the trapping t
and collision probability as parameters in a coarse-grai
model, rather than specifying a more detailed scheme
their quantification as a function of the DNA size, elect
field, post geometry, etc. The analytical simplicity of o
results allowed us to readily identify different regimes in t
dispersivity, as well as furnish order of magnitude estima
for the dispersion and separation resolution and predict o
mal operating conditions.

At first glance, our approach may appear overly simp
tic, since we have not explicitly accounted for any molecu
phenomena. Nevertheless, our results have captured ma
the trends observed in both numerical simulations and
periments. Consequently, the overall character of th
trends probably owes more to the inherent randomness in
collision frequency and duration, rather than the exact det
of the statistics and their molecular underpinning. Howev
moving from qualitative observations to quantitative pred
.
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tions necessitates choosing a particular model for the p
interactions. Although the existing models are probably
limited to accurately capture the relevant experimental d
@15#, it is inevitable that detailed experimental@16# and nu-
merical data will eventually become available. We anticip
that the synthesis of the latter data with the present the
when verified by further experimental data on separation
real arrays@15#, will ultimately lead to a greater understand
ing of this separation process and its optimization.
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