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Semiphenomenological model for the dispersion of DNA during electrophoresis
in a microfluidic array of posts
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A lattice Monte Carlo model is proposed for quantifying the dispersion of DNA during microfluidic elec-
trophoresis in a quasiperiodic array of posts similar to that encountered in the microfluidic self-assembly of
magnetic bead columns. The transport model is semiphenomenological in the sense that all parameters, such as
the post geometry, average collision time, and collision probability, are assumed to be accessible either directly
from experiment or from a model of the microscale physics. Asymptotically exact formulas are obtained for the
mean velocity and dispersivity using Taylor-Aris dispersion theory, which permits a straightforward analysis of
the separation efficiency. The model is applicable to a variety of situations involving collision-retardation

processes.
DOI: 10.1103/PhysRevE.69.011901 PACS nunier87.15.Tt, 05.40.Jc
I. INTRODUCTION dispersion and the separation resolution.

This issue of homogenization can be side stepped entirely

Characterizing the dynamics of DNA during its interac- by resorting to detailed Brownian dynamics simulations of
tion with a post, in particular the dependence of the dynamthe DNA motion for a particular arrangement of posg$ In
ics upon the length of the DNA strand, is requisite for prop-addition to quantifying the average transport through the ar-
erly quantifying many important separation processes. Fofay, detailed simulations may provide insight into the micros-
conventional electrophoretic separations in gels, the DNAcale dynamics, such as the relaxation lack thereof of the
post interaction represents a useful, albeit idealized, moddPNA between post-collision events. However, large scale
for the entanglement of DNA with the otherwise randomly Simulations are, by necessity, computationally intensive, and
arranged fibers of the gel. In contrast, the DNA-post interac€ach simulation only reveals information about a single spe-
tion very precisely models the prevailing separation mechacific combination of experimental parameters. Consequently,
nism in a number of microfluidic devices. Such devices typi-the simple analytical theory proposed here, despite the fact
Ca||y exp|0it microﬁthography to fabricate perfecﬂy periodic that it may be less precise than a detailed simulation, is still
arrays of post$1], and this has led to a number of experi- Of great utility because it produces parametric results.
mental[2] and theoretica]3—8] analyses of DNA dynamics In addition, semiphenomenological theories such as the
in such arrays. As an alternative to microlithographic fabri-one developed here are useful for conceptually understand-
cation, it is also possible to form periodic arrays of postsing the separation process. Indeed, this has been the case in
through the self-assembly of superparamagnetic beads, tfiee past for several novel microfluidic protocols, such as
“Ephesia” system[9].} those based upon rectified Brownian mot[d®,11] and en-

Although theoretical studies are typically motivated by tropic trapping[12]. Naturally, initial analyses such as these
applications involving arrays of posts, for the most partfocus upon the mobility difference arising in the device,
[3—7] they focus upon the intricate dynamics of the collisionsince it is this difference which gives rise to the separation.
with a single isolated post. Thus, one hopes to arrive at &lowever, completely characterizing the separation also re-
rational model for the average time engaged with the postiuires knowledge of the dispersivip*, which quantifies
(the trapping timg 7, and the collision probabilitfI. as a  the separation sharpness. Unfortunately, the dispersivity of-
function of the characteristics of the post and the size of théen proves much more difficult to calculate than the average

DNA. For practical applications, though, it is tkemulative  yelocity U*. For example, intuition suggests that transport in

effect of these post collisions which determines the averaggn array of posts should yield a mean velocity of the form
DNA motion and, ultimately, the separation efficiency. More-

over, it is not entirely obvious how to average single-post o U
dynamics into relevant macroscopic quantities, such as the U*=—— 1.1

whereU is the velocity in the absence of the posts &

, Electronic address: Jean-Louis. Viovy@curie. fr a ‘“retardation factor,” presumably calculable from the
The term Ephesia refers to the temple of Artemis in ancient P y

Greece(present day Turkey The temple was constructed of an S.Ihglef'DOSt d_atall' As will be e'VIdem shortly, the proper quan-
array of columns and repeatedly destroyed and reconstructed on tification of D* is not so obvious.

same site. Likewise, under the influence of an external magnetic We present here a framework for properly averaging mi-
field, the magnetic beads form periodic arrays of columns whichcroscale post-collision data into simple analytical results for
can be reversibly assembled and disassembled in the same chantle¢ average DNA mobility and dispersivity through the array.
by turning the magnetic field on and off. We focus upon a disordered staggered array of posts, a con-
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which indicate that universal behavior exists forlcross a
FIG. 1. Schematic of a quasiperiodic staggered array of cylinbroad range of parameters. A particularly simple modelfor
drical posts of diameted and intrarow center-to-center spaciag  assumes that it scales with the inverse of the applied field,
The rows of obstacles are separated by the distanbet are ran-  +~E~1 which appears to be the case from single-post ex-
domly “shifted” to produce a configuration similar to that resulting periments[2] and scaling argumen{d] in relatively strong
from the self-assembly of magnetic bead columns. fields.

In a coarse-grained model such as the one developed here,
figuration which is similar to that realized in the Ephesiathe simplest possible model for the collision probability as-
system. Our approach to the transport phenomena is seMiymes a dependence only upon the linear post dedsity
phenomenological, postulating that the average post spacinghat the DNA sees in one dimension as it moves through the
the probability of colliding with a postI;, and the average array. In a semiempirical comparison of this theory and Eph-
time to negotiate the post, can be obtained experimentally esja experimentfl5], use of the latter collision probability
or from a detailed microscale model. The mean velocity andurnished reasonable agreement for the band broadening.
dispersivity are then calculated exactly via generalizedyowever, this purely geometric interpretationIdf, is most
Taylor-Aris dispersion theory13,14, without the need to |ikely an oversimplification, since simulation d4,7] and
resort to numerical simulations, and the implications of thesgecent experimentsl 6] suggest that the collision probability
results on the separation process are discussed. Although tgepends strongly upon the initial offset with the center of the
model is developed in the ConteXLOf pOSt;COIIiSion inducedpost' the so-called “impact parameter”’ as well as the field
separations, the generic results fof and D* can be ap- strength[16]. Moreover, Brownian dynamics simulatiof&
plied to many other experimentally relevant situations in-in sparse arrays with typical experimental post densities in-
volving periodically retarded motion, such as entropic trap-dicate that, for sufficiently dense arrays, the collision prob-
ping [12] and spatially periodic ratchet-type separations, byability eventuallydecreasesvith increasing post density be-

specifying a particular model fdi; and 7. cause the DNA do not have sufficient time to relax between
encounters with the post. Finally, simulatiofid predict a
Il. MODEL DESCRIPTION coupling between the size of the postls,and the trapping

time 7 since it is difficult for short DNA to become extended

We focus our attention on quasiperiodic arrays of postsaround large obstacles. However, the latter coupling can be
such as the one depicted in Fig. 1. Within a given row, theaccounted for in a semiempirical manrjé5] by using an
cylindrical posts of diameted are regularly spaced by the experimentally measured trapping time.
distancea. The spacing between the center lines of adjacent A key feature of our model is the Markovian assumption
rows is alsoa, but the alignment between the rows is disor-that the collision probability is identical for all post regions.
dered. The resulting array possesses the qualitative featur€er perfectly staggered arrays, this is probably not a good
of a staggered or hexagonal array, but without the strict peassumption. After unhooking in a perfect array, the DNA is
riodicity. Such disorder is characteristic of the Ephesia sysmisaligned with the next post, and must reorient itself via
tem, in which repulsion between the magnetic posts leads tmolecular diffusion before it has the potential to suffer an-
local order and a Bragg peak in the diffraction pattern, butother collision. The characteristic time for this reorientation
interactions with the channel walls prevent long-range ordeiprocess, which can be much longer than the DNA relaxation

In this discrete lattice Monte Carlo model, the motion of time, implies that the collision probability increases as the
the DNA is approximated by jumps between the volume el-DNA moves further away from its last collision, resulting in
ements(lattice site$ represented by the boxes in Fig. 1. In a non-Markovian proceg$]. In contrast, the random relative
the absence of any interactions with the post, the DNA jumpsgocation between successive posts in our quasiregular array
from site to site in the direction of the field with its free- lessens the correlation between the unhooking from the first
solution velocity, U= ugE, where uq is the free-solution post and the probability of colliding with the next one. In the
mobility of the strand andE is the applied field. When arriv- present model, we assume that the shifted layers and result-
ing in one of the volume elements, we assufehe prob- ing post randomness ensures complete decorrelation between
ability of encountering a post is quantified by the collision collision events.
probability IT. and (ii) if the DNA becomes hooked on the At first glance, it would appear that the issue of relaxation
post, it is retained for an average time A number of mi-  would severely limit the realism of our model for actual
croscale models have been proposed for the latter paranseparations of long DNA. The time for the DNA to return to
eters, and the details of these models will be discusseis equilibrium conformation is characterized by the Rouse
shortly. For the most part, though, we will empleyandIl, relaxation time,rr~Nb?/D, whereD is the diffusion coef-
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ficient, b is the persistence length, amdis the number of
persistence lengths. To ensure that the DNA is completely
relaxed between possible collisions; must be longer than

the mean transit timea/U between post regions. For 1 < 4 2@i®3
N-DNA, the Rouse relaxation time is of the order of seconds, 4

which means that for a typical post spaciag-5 um and ‘/ \d>

electrophoretic mobilityuy,~3 umV/icms, we would be

limited to fieldsE<0.2 V/cm. However, immediately after (a) (b)

engaging a post, there is a very rapid relaxation due to non-

linear elasticity{5], and recent experimenit$6] indicate that FIG. 2. (a) Basic graph for the array of posts depicted in Fig. 1.
much of the relaxation process farDNA takes place in Open circlesm and black circlesh, respectively, correspond to
~0.15 s. Consequently, it is likely that the DNA have under-"misses” and “hits” with the post. The edges numbered 1-4 cor-
gone significant relaxation before their next collision, even aféspond to the different types of jumps that can be made on the
relatively high fields. Actually, some level of “relaxation graph. The da_shed box is the graphical equivalent of the vo_Iume
memory” between collisions could be taken into account in€/éments of Fig. 1(b) The local graph. Edges 2 and 3, which
the model via reduced effective collision parameters. Avoid_correspond to consecutive misses or hits, result in loops on the
ing this, however, reduces the number of free parameters iﬂraph‘

the model and increases its generality.

Owing to the strong fields typically employed in experi- probabilitiesw(j) for moving between the nodes of the lat-
tice; and(iii) the probabilitiesw(i) that the DNA does not

ments(up to 35 V/cm [15], we neglect longitudinal diffu- ) . . ; :
sion and lateral jumps due to molecular diffusion, therebye?(It n_odel during the t|me_T. The negl_ect of translational
diffusive effects renders this a convective model, whereupon

requiring that each jump results in motion in the direction of.um s on the araph oceur. on average. with the time ste
the field. This convective model should be reasonable Wheh P grap ’ 9¢, P

the reduced field is largel7], namely, when a a
T=—=——. 3.1
moEa U  uoE @D
>1. (2.1 _ . _ _
2D If the DNA is resident on a nonpost nodg it must exit the

node[i.e., w(m)=0] and can do so through the edges la-

With the values for uy and a cited above andD beled 1 and 2. With the i e
N 5 . L S . probability of hitting the pdst,
0.25 um’/s, Eq.(2.1) requires thaE>0.1 Vicm, which is the transition probabilities for exiting nodm are w(1)

easily satisfied in experiments. This assumption is further:H andw(2)=1-TI,. When the DNA has engaged the
C c-

supported by video microscopy experiments in the Ephesi h il f s h
system, which reveal that the DNA tends to traverse the arr c()it) O?S nlofiiﬂ_, 1t 3\/&?:?::%& ;?nr::gig?”:; tter%?r?;

in a more-or-less linear fashion. time

Ill. GENERALIZED TAYLOR-ARIS DISPERSION THEORY T

a=z. (3.2

In the present section, we use Taylor-Aris dispersion

theory[13,14] to calculate the mean velocity* and disper-  Accounting for the trapping time, the remaining transition
sivity D* from the model described above. This procedureprobabilities arew(3)=1I./a andw(4)=(1-11.)/a. Im-
entails two step§) converting the model into the local graph plicit in this model is the fact that the posts impede the
and specifying the transport thereon i computingu* ~ motion of the DNA, which requires that>1, where the
andD* from the general theory. trivial limit _a—>1 corresponds to the case Whe_re the posts
offer no resistance whatsoever to the DNA motion.

The dispersion calculation is not performed on basic
graph of Fig. 2a), but rather on the “local” graphl’,. The

In each volume element of Fig. 1, the DNA can eitherlocal graph, depicted in Fig.(B), is constructed by combin-
engage the post or pass through the region unimpeded, ait the homologous vertices outside the unit cell with their
the entry into the volume element can be preceded either byounterparts inside the unit cell. In the present circum-
an engagement with the post or by an unimpeded pass. Costances, this results in loops on the local graph which corre-
sequently, the lattice model can be represented by the spapond to consecutive hits or misses.
tially periodic (basig graph depicted in Fig. (2). In this
graph, engagements with the post correspond to the black B. Calculation of U* and D*
circles h and unimpeded passes correspond to the white . _ )
circlesm, and the edges represent the possible transitions. By For the one-dimensional transport problem considered
convention, the nodesare represented by Roman characters'ere. the cal_culatlcin. scheme requires first computing two
and the edgegare represented by Arabic numerals. node-based fields?,(i) andB(i), which are subsequently

In order to perform the calculation, it is necessary to ex-employed in edge-based summations which ultimately fur-
tract from the modeli) the jump timeT; (ii) the transition nish U* and D*. The field P;(i), representing the

A. Graphical construction
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asymptotic probability of locating the DNA at a given ndde 16
on the local graph, is computed by the solution of the equa- “10
tion set[14] 141 ©¢=
S
> w(j)Ps(i)-[1-w(i)IP5(1)=0, (3.3 81
je Q™ (i) £
: — iy E 10
subject to the normalization condition 8
=
oo <] ,2 .0 7
PZ(h)+PE(m)=1. (3.4 508 .
In the former,Q2* (i) are the edges entering nod&om i’. g 0.6 1
The solution of Eqs(3.3) and(3.4) is E
£ 04
P 1-11. p*(h all, £
M= T a1 TV =T ey 02]
(3.5 13
0.0 t t t t
The mean velocity is then computed by the edge sum 0.0 02 04 06 08 10
[]_4], Collision Probability, IT,
_ a FIG. 3. Plot of the dimensionless dispersion coefficient as a
u* =7 E w(j)Pg(i’), (3.6 function of the collision probability for the values efindicated in
) the figure.
over all edges with initial vertices at. Use of Eq.(3.5) in —, — ) )
the latter furnishes the mean velocity Knowledge ofu™ andD* for two different DNA permits
computing the separation resolution between them over a
— U separation length.. With the number of theoretical plates
U~ B7  [1g]
1+l (a—1) ’
This result was anticipated in E@L.1), with the retardation B U*L
K being the product of the probability of hitting a post in the N= op* (3.12
arraylIl. and the additional time— 1 necessary to negotiate
the post. . . . for each species, the separation resolution is computed by
Computation of theB field necessitates solving the equa- [1g]
tion set[14]
. . AU* /(N
WO oy 1-w()| . Re=— u, (3.13
> | —==|PsinB() +a]- P5(i)B(i) (U*y V 16
jeQ™() T T
_ Pﬁ(i)U*, 3.8 where A refers to the(positive difference between the

speeds ang- - -) is an average value.

where B(i) are determined to within an arbitrary additive
constant. This constant can be used toBfgt) =0, where- IV. DISCUSSION

upon we recover the result In Fig. 3, we plot the dimensionless dispersivity of Eqg.

a—U*T (3.11) as a function of the collision probability for several
(3.9  different values ofx. The shapes of these curves arise from
I the relative contributions of the two driving forces for dis-
eoerS|on namely, the stochastic hooking time, embodietl in
(and«), and the collision probability. The qualitative behav-
ior of these curves can be most easily understood by consid-
() T ering three limiting cases:
=3 2 [ }Po(l )b(j)?- U*U* (3.10 (a) Short trapping time§a— 1<1). This first case, where
the posts act like a sieve and offer minimal resistance to
DNA motion through the array, can arise in two very differ-
ent circumstances. First, short DNA tend to quickly roll off
the posts without becoming strongly extend&d, an obvi-
s ous case of short trapping times. For longer DNA, however,
D* _Me(a=D1+(2-1e)(e—1)] . (311 the coupling between the field strength and obstacle spacing
Ua 201+ (a—1)]3 may make the time between collisions insufficient for the

B(m)=

The dispersivity may then be computed from the edg
summation14]

whereb(j)=a—B(i)+B(i’) for an edge directed fromi to
i. With some algebra, we arrive at
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DNA to relax completely. In the latter case, the DNA is in a D*
relatively extended state when it engages the next post, and it U—mHC(a— 1)2. 4.3
is unnecessary for it to complete a full “hook-and-pulley” a

mechanism before disengaging from the post, resulting agaifine dispersion increases with increasingcontrary to the

in short trapping times. ~ behavior in the opposite limill,.=O(1). In the small II,
In the limit «—1<1, Eq.(3.10 possesses the leading |imit, the dispersion is not dominated by the distribution of
order behavior trapping times, but rather by the magnituderofReturning
to our example of two DNA with trapping timesg and, it
D* I, is very likely in the lowIl, limit that one of the DNA, say
Ua~ 7(a—l). (4.)  number 2, will not be trapped at all. In this case, its trapping

time vanishess,=0, and it is the magnitude of;, rather
. o _ _ o o than the distribution governing,, which determines the dif-

The dispersion is linear ifil;, since more sieving collisions  ference in the “trapping” times and the spreadif2y]. The
result in greater spreading, and the magnitude of the dimeq—arge contribution tD* from the trapping time in the low

sionless dispersion is small because these collisions do not il limit i : ith i inale-
strongly effect the DNA mobility. Although Ed4.1) is only angglriuct; iirrrr?gleiﬁag]cons,lstent with detailed single-post

strictly valid for a—1<1, we can(arbitrarily) define and Havi vzed the limiting behavior @*
upper bound to this sieving behavior as the critical value, 12ving analyzed the limiting behavior @, we now
a* =4/3, whose maximum dispersion occurﬂ:l [19] turn our attention to estlmatln@* In EpheS|a experiments.

There is a qualitative change in the dependencofupon Explicitly, for the separation ok-phage DNA and its dimer
1. whena> a* [15], collision probabilities ofll,~0.35 and trapping times
c .

; ; ; o i f a~2—5 were observed, which indicates that the disper-
(b) Long trapping times and high collision probabilities of ' -
[a—151]1,=0(1)]. The second case can be considerecon Should be somewhere between casgsnd(iii). From
the “normal” mode of operation for these systems. The en-=9- (,3'1:0 (or,_ glterr}atlve!y, Fig. & the dimensionless dls.'
gagement with the posts is sufficiently long to strongly effectPersion coefficient is typically between 0.1 and 0.5. Using

the DNA mobility, and the number of these collisions is sig- 1€ values cited in Sec. Il and a nominal electric field
nificant. To leading order, we now have strength of 10 V/cm, we estimate that the dispersivity in-

duced by the presence of the posts is typically 60-300 times
_ greater than molecular diffusion alone. This is consistent
D* 2—1l; with both the underlying assumption in this analysis, namely,
Ua 212(a—1) : 42 that the dispersion is dominated by the post interactions, and
the situation encountered in experiments.
o o ) ) In addition to making the latter numerical estimates, sig-
The qualitative behavior is exactly the opposite of cé%e nificant insights intd* and the separation resolution can be

the dispersion now decreases with increadihgor «. To : . : .
understand this result, it is easiest to consider initially theObtalned by adopting simple models ferandTl. . To this

) extent, we will assume that~E ! andIl.~d/a. In such a
case wherdI.=1. Every pass through the post region re- .
; . RS model, « andII. are no longer functions d&, whereupon
sults in a collision, so the randomnesslIih, is eliminated o — o ,
and the dispersion is governed solely by the distribution ofV€ recover the scaling™~E. This is analogous to classical
trapping times. The spreading between two DNA which entefesults for the dlsper5|on of tracer part.|cles in st'ron'g flow
a post region at the same time and are retained for respectifgrough porous medig20], where the dispersion is linear
timesr; and 7, depends upon the differengg — 7,|, which  with the flow strength. Moreover, sind* andU* are lin-
is itself governed by the distribution of possible choices forear inE, then number of plate and the separation resolu-
7, and 7,. Our use of a mean trapping time rather than tion R are independent d&. As a consequence, a plot of the
specifying a detailed distribution, implies that the distribu-separation resolution against the electric field would plateau
tion of trapping times decays exponentially at the rate at high field strengths. Given a fixed chip sizethe overall
consistent with numerical simulatiofi3]. Consequently, the ~ €fficiency is optimized by running at higher fields, since the
distribution becomes ever wider ads decreased, and since Separation time is decreased without sacrificing resolution.
it is this width which dominates the dispersion whél  Likewise, for a given separation time/(U*) (or, equiva-
=1, thenD* must increase as is decreased. Moreover, as lently, a given ratioL/E), the separation resolution is opti-
the collision probability moves away froii =1, D* must mized_ by employing _Iarge values bfandE, in a_clcord with
increase as well, since the randomness in the trapping is nofPeriments 15]. In light of the fact thatr~E~" and I,
augmented by the randomness in the collision probability. ~2/d are only rough approximations, the latter observations
(c) Long trapping times and low collision probabilities should be viewed as general trends, rather than quantitative
[@—1>1]I(a—1)<1]. The behavior in this final limit s Statements.
best understood by starting Hi.=0. This is a trivial case,
since there are no collisions and the dispersion vanishes
(since molecular diffusion has been neglegtess 11, in- In the present contribution, we have presented a straight-
creases, to leading order forward semiphenomenological model for DNA separation

V. CONCLUSION
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in the arrays of posts typical of self-assembled magnetic pations necessitates choosing a particular model for the post
ticles. For the most part, we have treated the trapping timénteractions. Although the existing models are probably too
and collision probability as parameters in a coarse-grainetimited to accurately capture the relevant experimental data
model, rather than specifying a more detailed scheme fofl5], it is inevitable that detailed experimen{dl6] and nu-
their quantification as a function of the DNA size, electric merical data will eventually become available. We anticipate
field, post geometry, etc. The analytical simplicity of our that the synthesis of the latter data with the present theory,
results allowed us to readily identify different regimes in thewhen verified by further experimental data on separations in
dispersivity, as well as furnish order of magnitude estimateseal arrayq 15|, will ultimately lead to a greater understand-
for the dispersion and separation resolution and predict opting of this separation process and its optimization.

mal operating conditions.
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